Scanning electrochemical microscopy. 57. SECM tip voltammetry at different substrate potentials under quasi-steady-state and steady-state conditions.
نویسندگان
چکیده
We discuss SECM tip voltammetry, where a UME tip is held above a conductive substrate within about a tip radius and a tip voltammogram is recorded as its potential is slowly scanned while the substrate is held at a fixed potential. When the potential of the substrate is changed, the series of steady-state tip voltammograms provide information about the reactants and products. When the potential of the substrate, ES, is set so that the reaction at the substrate is opposite to that at the tip (the usual SECM conditions), a total positive feedback (tpf) tip voltammogram is recorded. When the substrate potential is set to values where the reaction at the substrate is the same as that occurring on the tip, the tip is shielded from the species in the bulk solution. Depending upon the substrate potential, this can cause total shielding (ts) or a voltammogram that is the result of partial feedback/partial shielding (pf-ps). The result is a series of tip voltammograms that are characterized by tpf, pf-ps, or ts, depending upon ES. Experimental tip voltammograms resulting from the reversible reduction of TCNQ and oxidation of ferrocene in MeCN are reported. These are compared with those from simulations and approximate equations developed to describe the features of the tip voltammograms generated under tpf, ts, or pf-ps conditions. The effect of the diffusion coefficient ratio on the ability of the UME tip to reach a true steady state is also addressed and possible applications, e.g., obtaining information about the reversibility of an electrochemical reaction, the product of an electrochemical reaction, the stability of that product, or the diffusion coefficients of the electroactive species, are discussed.
منابع مشابه
Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.
We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detecte...
متن کاملFabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments.
A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic ...
متن کاملScanning electrochemical microscopy Part 39. The proton/hydrogen mediator system and its application to the study of the electrocatalysis of hydrogen oxidation
The H/H2 redox couple was investigated as a mediator system for scanning electrochemical microscopy (SECM) with proton reduction from a 0.01 M HClO4 solution at a Pt tip. The feedback behavior of the mediator was examined at different substrates (Pt, Au). Unlike the one-electron outer-sphere redox couples usually used as mediators in SECM, this mediator system is sensitive to the catalytic acti...
متن کاملScanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode.
A scanning electrochemical microscopy (SECM) methodology for localized quantitative kinetic studies of electrode reactions based on the tip generation-substrate collection (TG-SC) operation mode is presented. This approach does not use the mediator feedback required in typical kinetic SECM experiments. The reactant is galvanostatically electrogenerated on a tip placed in proximity to the substr...
متن کاملElectrochemical studies of guanosine in DMF and detection of its radical cation in a scanning electrochemical microscopy nanogap experiment.
This communication reports the findings of the investigation of the electrochemical (EC) oxidation of the important bimolecular guanosine (Gs) by scanning electrochemical microscopy (SECM) using carbon fiber ultramicroelectrodes (CF-UMEs) as the probe and substrate. The first attempt is to try to gain a steady-state voltammogram for EC oxidation of Gs at the CF-UME probe in aqueous buffer solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 79 13 شماره
صفحات -
تاریخ انتشار 2007